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ABSTRACT

A forecasting lead time of 5–10 days is desired to increase the flood response and preparedness for large

river basins. Large uncertainty in observed and forecasted rainfall appears to be a key bottleneck in providing

reliable flood forecasting. Significant efforts continue to be devoted to developing mechanistic hydrological

models and statistical and satellite-driven methods to increase the forecasting lead time without exploring the

functional utility of these complicated methods. This paper examines the utility of a data-based modeling

framework with requisite simplicity that identifies key variables and processes and develops ways to track

their evolution and performance. Findings suggest that models with requisite simplicity—relying on flow

persistence, aggregated upstream rainfall, and travel time—can provide reliable flood forecasts comparable to

relatively more complicated methods for up to 10 days lead time for the Ganges, Brahmaputra, and upper

Meghna (GBM) gauging locations inside Bangladesh. Forecasting accuracy improves further by including

weather-model-generated forecasted rainfall into the forecasting scheme. The use of water level in the model

provides equally good forecasting accuracy for these rivers. The findings of the study also suggest that large-

scale rainfall patterns captured by the satellites or weather models and their ‘‘predictive ability’’ of future

rainfall are useful in a data-driven model to obtain skillful flood forecasts up to 10 days for the GBM basins.

Ease of operationalization and reliable forecasting accuracy of the proposed framework is of particular im-

portance for large rivers, where access to upstream gauge-measured rainfall and flow data are limited, and

detailed modeling approaches are operationally prohibitive and functionally ineffective.

1. Introduction

a. Background

Flooding poses a severe constraint on socioeconomic

development in flood-prone areas across the world. On

average, river flooding affects 21 million people and $96

billion in gross domestic product (GDP) worldwide each

year, with developing countries seeingmore of theirGDPs

exposed to flood risks than the developed world (WRI

2015). South Asia is identified as one of the hardest-hit

areas, with upward of 9.5million people affected by annual

floods. India and Bangladesh share the top two positions

on the list of flood-prone nations, with Pakistan coming in

at fifth and Afghanistan at ninth (WRI 2015).

A forecasting lead time of ;5–10 days is desired to in-

crease the flood response and preparedness (ADPC 2002;Corresponding author: Shafiqul Islam, shafiqul.islam@tufts.edu
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Webster and Hoyos 2004; CEGIS 2006) in flood-prone

regions across the world, including Bangladesh. The

major limitation of providing short (3–5 days) to mid-

range (7–10 days) flood forecasting is mainly associated

with large uncertainty in precipitation forecasts data

(Clark and Hay 2004; Pappenberger et al. 2005; Cloke

and Pappenberger 2009; Charba and Samplatsky 2011;

Dravitzki and McGregor 2011). The accuracy of pre-

cipitation forecasts of weather models is currently lim-

ited to 1–5 days globally (Clark andHay 2004; Cloke and

Pappenberger 2009; Pappenberger and Buizza 2009;

Bauer et al. 2015), much shorter than the desired fore-

cast lead time. Consequently, attempts to develop and

refine lumped, semidistributed, and distributed hydro-

logical models and a range of numerical, statistical, and

satellite-driven methods (i.e., Jasper et al. 2002; de Roo

et al. 2003; Bartholmes and Todini 2005; Siccardi et al.

2005; Webster et al. 2010; Hopson and Webster 2010;

Yucel et al. 2015) continue to improve but have yet to

produce operationally credible flood forecasting with

5–10-days lead time. At the same time, comparative

utility of these computationally intensive and compli-

cated methods with respect to simple numerical ap-

proaches has not been fully explored.

Here, we examine the current flood forecasting

methods for the Ganges, Brahmaputra, and Meghna

(GBM) river basin system (Fig. 1). TheGBM river basin

system in South Asia, with a combined drainage area of

approximately 1.7 million km2, is the third-largest

freshwater outlet to the ocean (Chowdhury and Ward

2004). Three river basins of this system feature unique

geomorphology and flow regimes, and the tributaries of

these river basins flow through different ecological, so-

cial, economic, and political realms (Biswas 2008). We

propose a data-based streamflow and water level (WL)

forecasting scheme—named as the Requisitely Simple

(ReqSim) flood forecasting model—by using the notion

of requisite simplicity. Requisite simplicity provides a

framework by discarding some details while maintaining

conceptual clarity and the scientific precision of a com-

plex system (Stirzaker et al. 2010) that includes many

interactions, processes, and feedbacks—like rainfall–

runoff and flood forecasting models in this case. Req-

uisite simplicity may be achieved by taking a closer look

at the dominant processes of a complex system, reducing

the system to its essential components, and identifying

the emergent properties of a system (Ward 2005;

Stirzaker et al. 2010; Cilliers et al. 2013). A data-based

model aims to learn from the data about how the system

works by establishing a relationship between a series of

inputs and a series of outputs (Beven 2012).

At present, the Flood Forecasting and Warning Cen-

ter (FFWC) of the Bangladesh Water Development

Board (BWDB) generates and disseminates three types

of flood forecasts: 1) short-range (1–5 days) de-

terministic WL forecasts at 40 river points, 2) medium-

range (1–10 days) probabilistic WL forecasts at 35 river

points, and 3) Jason-2 altimetry-based WL forecasts at

13 river points (www.ffwc.gov.bd). FFWC requires the

upstream flow information of three major transboundary

FIG. 1. Geographical setting of the GBM river system and locations considered for streamflow and WL forecast

generation (shown as red dots). Map prepared by authors. GIS file sources: IWM, Bangladesh, and SRTM DEM.
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rivers between Bangladesh and India (i.e., the Ganges,

Brahmaputra, and upper Meghna Rivers) to generate

effective flood forecasts in Bangladesh. This poses a

fundamental difficulty for them due to the limited avail-

ability of gauge-measured upstream streamflow and WL

data.As a result, forecasting these transboundary rivers is

very essential for FFWC. It appears that if the upstream

inflows at these three major rivers are successfully pre-

dicted with high accuracy, FFWC’s current operational

flood forecasting model (i.e., a one-dimensional river

model) can provide more reliable forecasts within Ban-

gladesh (Jakobsen et al. 2005). Thus, improvement of the

GBM streamflow or WL forecasts at Hardinge Bridge

(HB) on the Ganges, Bahadurabad on the Brahmaputra,

and Amalshid on the upper Meghna (UM) or Barak

River is still considered as a major challenge in the ex-

isting operational forecasting capability of FFWC and

overall flood disaster management plan in Bangladesh

(Hopson andWebster 2010; Hossain et al. 2014a; Hossain

and Bhuiyan 2016).

b. Attempts to simplify and requisite simplicity

Two different considerations must be considered to

understand the limits of flood forecasting accuracy:

a catchment condition that focuses on the state of the

catchment and an atmospheric condition that examines

the predictability of precipitation inputs. Not surpris-

ingly, precipitation, a key input to a flood forecasting

model, is generally considered to be the largest source of

uncertainty for medium- to long-range flood forecasting

(Pappenberger et al. 2005; Bauer et al. 2015; Wu et al.

2017). Accuracy of flood forecasting models, whether

using observed or forecasted rainfall, are also limited in

their ability to capture local characteristics of the

rainfall–runoff processes because we do not know the

soil and geological properties of catchments at the scale

needed to model the relevant dynamics (Marks and

Bates 2000; Pappenberger et al. 2005). In fact, the rec-

ognition of fundamental problems in the application of

physically based models—due to scale mismatch be-

tween model equations and heterogeneity of rainfall-

and runoff-generating mechanisms; practical constraints

on solution methodologies; and uncertainties associated

with parameter estimation, model calibration and vali-

dation—for flood forecasting is not new (Beven 1989;

Wood et al. 2011; Beven 2012).

A flood forecasting system usually includes a large

number of nonlinear relationships among rainfall and

runoff processes with feedback. To generate a perfect

(or nearly perfect) model of such a system, one has to

model everything (or nearly everything). Yet, as Lorenz

(1963) aptly pointed out, in a nonlinear system with

feedback, approximate accurate representation of the

present does not guarantee accurate forecast of the future

due to sensitivity to the initial conditions. Consequently,

to develop a reliable and robust flood forecasting model,

we have to reduce the complexity of processes, in-

teractions, and feedback by simplifying the model

structure. Currently, we do not have a generally ac-

cepted criterion to decide what constitutes a simple

model within the context of complexity of modeling and

functional utility.

We adapt an approach proposed byWard (2005), in the

context of system design, to illustrate the relationship

between modeling complexity and functional utility

(Fig. 2). We begin at the lower left quadrant in region A.

Here the system is simple: cause–effect relationships are

known, modeling is guided by fundamental principles,

and mathematically tractable solutions are usually found.

As we introduce more realism to our model, we move

toward region B. During this move, new variables, pro-

cesses, and dynamics are introduced. An increased level

of modeling complexity—from region A to B—thus

usually leads to better functional utility (e.g., forecasting

accuracy). At this stage, we may have a functional flood

forecasting model for a given purpose. Further increasing

the level of model complexity, however, may not lead to

better forecasting accuracy.

Over the last several decades, with an advanced un-

derstanding of atmospheric physics, deployment of a

global upper-atmospheric observation network, and in-

creased computational power, our ability to provide

skilled short-term (1–5 days) precipitation forecasts has

FIG. 2. Requisite simplicity trade-off betweenmodeling complexity

and functional utility (adapted from Ward 2005).
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improved. However, Lorenz (1963)—in his pioneering

work on chaos—showed that nonlinear systems are only

predictable for a finite time owing to their sensitive de-

pendence on initial conditions. This puts a fundamental

limit on our ability to provide accurate medium-range

(5–10 days) precipitation forecasts. For example, a

careful examination of over 40 years of 8-day atmo-

spheric forecasts over the contiguousUnited States (e.g.,

Clark and Hay 2004; Cloke and Pappenberger 2009)

or the European Centre for Medium-Range Weather

Forecasts (ECMWF)-generated precipitation forecasts

over the Danube basin (Pappenberger and Buizza 2009)

suggests a limit on the predictability of precipitation

with very low to modest skill out to 4–5 days. Given that

the antecedent conditions likely dominate the runoff

over lead times shorter than the time to concentration of

the basin (Voisin et al. 2011), moderately skillful nu-

merical precipitation forecasts at such short lead times

may not lead to better forecasting accuracy. However,

there is a perception that increased forecasting accuracy

is achievable by simply increasing the space–time

resolution and physical parameterization of numerical

models. This perception may lead one to a journey from

region B to C, in which model complexity increases

without any appreciable change in functional utility.

While in region B, further progress may come not

from adding more modeling complexity, but from sim-

plification. Here, we argue that simplification may be

achieved as we move from region B to D by taking a

closer look at the dominant processes for large river ba-

sins and reducing the model to its essential components.

The proposed requisite simplicity—to paraphrase Ein-

stein, ‘‘simple but not simpler’’—is achieved by identify-

ing the key components of the rainfall–runoff process and

developing ways to track their evolution for our ReqSim

flood forecasting models described in section 2a.

c. Premise and structure of this paper

Building on the notion of requisite simplicity, we

present a linear regression-based ReqSim flood fore-

casting model for the Ganges, Brahmaputra, and

Meghna (Barak) basins at their most downstream

gauging locations—HB, Bahadurabad, and Amalshid,

respectively—and report the forecasting results of up to

10 days lead time over 2007–15. In Jiang et al. (2016), we

have presented a proof of concept of this scheme with

limited results from the Ganges River for 2002–07. This

work thus aims to introduce streamflow and water level

forecasts of three major rivers of Bangladesh (i.e., the

Ganges, Brahmaputra, and Meghna) with an accuracy

comparable to currently available operational flood

forecasting techniques by using a ‘‘simpler’’ ReqSim

model so that the flood forecasting agencies and other

government and nongovernment stakeholder organiza-

tions of the country could become interested in adapting

this technique and applying it in their disaster operation

activities.

Section 2 explains the development of the ReqSim

forecasting framework. Section 3 presents the results of

the model with different combinations of streamflow or

WL and basin rainfall. Section 4 discusses the key find-

ings of the paper, applicability, and potential limitations

of our flood forecasting model.

d. Flood forecasting efforts in Bangladesh

Bangladesh is the most downstream riparian country

of the GBM river system. Flooding is an annually re-

curring event in this region, with approximately one-

fifth of the area of Bangladesh inundated by flood water

every year and as much as two-thirds inundated during

extreme events (Mirza et al. 2001). The annual flood

becomes catastrophic if a peak discharge of the Ganges

and Brahmaputra Rivers occurs simultaneously, like in

1988, 1998, and 2007. The flooding conditions may also

worsen if a high tide in the Bay of Bengal coincides with

high river discharge.

The limited data availability from upstream basin

areas in India puts a fundamental limitation on Ban-

gladesh to produce and disseminate skilled flood fore-

casts of 5–10 days lead time. Over 90% of the GBM

drainage areas lie outside of Bangladesh that generate

about 80% of flood season (i.e., June–September) flow

inside Bangladesh (Palash et al. 2014). To overcome this

limitation imposed by upstream data availability, the

FFWC started applying a numerical one-dimensional

hydrodynamic model (river forecast model) since 1992

(Jakobsen et al. 2005). There are 38 upstream boundary

condition points in the FFWC river forecast model, of

which the HB (Ganges), Bahadurabad (Brahmaputra),

and Amalshid (UM–Barak) locations are most impor-

tant. FFWC opted for a subjective approach to estimate

the possible WL change at these three boundary points

over the next 72h by observing radar, numerical weather

model, or satellite-derived rainfall patterns in the up-

stream of the GBM basins. From 2014, FFWC—with the

technical help from the Institute of Water Modeling

(IWM), based in Dhaka, Bangladesh—has replaced its

subjective boundary preparation with numerical GBM

basin model-generated flow forecasts for up to a 5-day

lead time (http://www.iwmffws.info/index.php).

Since 2003, the FFWC also started using the proba-

bilistic forecasts at HB (Ganges) and Bahadurabad

(Brahmaputra) for a 10-day lead time developed by the

Climate Forecast Application Network (CFAN; www.

cfanclimate.com) in its river model to simulate WL

forecasts inside Bangladesh. CFAN provides the FFWC
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forecasts with 51 ensembles on a daily basis, and these

are widely regarded as very successful in enhancing

flood forecasting lead time and accuracy in the country.

However, FFWC uses three sets of flow forecasts from

the ensemble (i.e., ensemble mean, and mean plus and

minus one standard deviation) to run its river model and

generate daily forecasts. It appears that applying all

ensemble forecasts in FFWC’s river model is not feasi-

ble due to the model’s high computational time and

difficulties in disseminating ensemble forecasts for op-

erational purposes.

Hossain et al. (2014a,b) employed Jason-2 satellite al-

timetry estimates in the upstream of the Ganges and

Brahmaputra in a hydrodynamic river model and trans-

lated the satellite altimetry to downstream WL inside

Bangladesh. From 2014, the FFWC has started testing

Jason-2–based WL forecasts at major river locations of

Bangladesh for up to 8 days lead time, including HB

(Ganges) andBahadurabad (Brahmaputra), which shows a

great forecasting potential for Bangladesh. The forecast

performance of CFAN and Jason-2 forecasts are discussed

and compared with our proposed method in section 3c.

The satellite-derived river width coupled with a re-

gression technique was introduced by Hirpa et al. (2013)

to forecast the Ganges and Brahmaputra for up to

15 days lead time. The Nash–Sutcliffe efficiency (NSE)

coefficient of Ganges daily forecasts at 1-day lead time is

0.80, which declines to 0.52 for 15-days lead time using a

satellite-derived flow (SDF) method. For the Brahma-

putra, they are 0.8 and 0.56, respectively. Adding flow

persistence to SDF (i.e., SDF 1 PERS) improves the

Ganges root-mean-square error (RMSE) by 41% from

5315 m3 s21 and Brahmaputra by 37% from 8190 m3 s21

for a 15-day lead time. They also applied an autore-

gressive moving average (ARMA) model, which pro-

vides better forecasts to SDF1PERS up to 10 days for

the Ganges and 3 days for the Brahmaputra River.

However, it is difficult to interpret their results for the

flood season (June–October) because they evaluated

their 1997–2010 results for the entire year, which is ex-

pected to yield better performance statistics due to very

low flow and less variability during nonmonsoonmonths

(November–May). Akhtar et al. (2009) developed an

artificial neural network (ANN) for the Ganges flow

forecasting for up to 10 days lead time. Their results

showed the value of the sum of lagged rainfall as input

started to become noticeable after 7 days lead time.

Biancamaria et al. (2011) discussed the utilization of

TOPEX/Poseidon measurements in the Ganges and

Brahmaputra and reported WL anomalies at HB and

Bahadurabad with an RMSE of 0.40m for 5 days lead

time and 0.6–0.8m for 10 days lead time during mon-

soons in 2000–05.

e. Data-based modeling

The data-based model is inductive in letting the data

suggest an appropriate model structure (Beven 2012). In

some cases, a data-driven model can offer a mechanistic

interpretation of a systemand lead to further insights that a

physically based model or theoretical reasoning might fail

to reveal (Young 2003; Beven 2012). Young and Beven

(1994) have shown that, with a good physical understanding

of the underlying system and the observations, a data-based

mechanistic modeling approach can provide sufficient and

reasonable explanations of the system behavior. Thus,

complex nonlinear natural processes can potentially be

decomposed fairly easily into several serial, parallel, or

feedback connections of simple processes, each of which

can be considered as a first-order conservation equation

(such as a representation of rainfall–runoff processes).

Young and Beven, however, warned against over-

dependence on the model and urged that the associated

variable and parameter uncertainties should be carefully

evaluated and that an adaptive mechanism should be

used to train the model with multiple time series datasets

for a robust model equation. Young (2002) introduced a

data-based mechanistic flood forecasting model based

on a recursive estimation of nonlinear, stochastic, and

transfer-function equations of rainfall–flow time series

data. This model was mostly successful, not only in

characterizing the rainfall–flow dynamics of the catch-

ment, but also for interpreting essential aspects of a basin’s

hydrology. However, using an example from a practical

application of the model, Young suggested potential

limitations of the model in terms of failing to explain

several aspects of rainfall–runoff processes.

Smith et al. (2014) introduced a data-basedmechanistic

model with a parsimonious representation of catchment

dynamics that could generate reliable flash flood forecasts

for a small Alpine catchment. They analyzed historical

observed flow and radar rainfall data, identified analogs

from the predictors, and applied those in precipitation

forecasts to simulate flow forecasts. The UK Environ-

ment Agency has adopted a data-based real-time flood

forecast modeling approach developed by the Delft

Flood Early Warning System (Leedal et al. 2013). The

modeling approach uses a network of nodes representing

upstream subcatchments, identifies input nonlinearity

and output transfer functions, and applies Kalman-filter

hyperparameters to generate flow forecasts. Shahzad and

Plate (2014) applied a data-based modeling approach,

such as a regressionmodel, a linear rainfall–runoffmodel,

or a combination of those two, in the Mekong River ba-

sin’s flood forecasts with the integration of rainfall data

from upstream gauging stations and station-to-station

flow travel time. Their results show that the regression
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model works fairly well for 1–2-day forecasts while the

linear rainfall–runoff or the combined model can be

useful for forecasting up to 5 days. Data-based mech-

anistic flood forecasting models were also applied

in the United States and Honduras (Basha et al. 2008)

by applying a multiregression approach based on

rainfall, air temperature, and river stage observations

and a stage–discharge relationship to generate dis-

charge forecasts.

f. Hydrology of the GBM river system

The hydroclimatology of theGBM system is diverse and

nonhomogeneous but similar in seasonal patterns of rain-

fall occurrence and streamflow generation (Rasid and Paul

1987). For example, the southwest monsoon originating

from the Bay of Bengal brings more than 70% of average

annual rainfall during June–September over theGBM.The

western Ganges receives relatively less annual rainfall than

the rest, about 760–1020mm, while the middle and east

receive 1020–1520mm and 1520–2540mm, respectively

(FAO 2016). The Brahmaputra basin shows a large north–

south gradient in annual precipitation. The upper Brah-

maputra in the Tibetan Plateau receives 300mm of annual

rain, whereas it is 1200mm in the east of the lower Brah-

maputra and 6000mm in the south over the Meghalaya

Plateau (IWM 2013; Bajracharya et al. 2015). The annual

rainfall in the westernMeghna basin ranges from 2150mm

over the northeast haor region of Bangladesh to 6000mm

over the southern foothills of the Meghalaya in India. The

UM (Barak) receives the highest annual rainfall, from

1700mm in the east to 3000mm in the west. Because of the

seasonal hydroclimatology, there is a strong difference in

average annual and peak discharges of these rivers.

Table 1 shows the key physical and hydrologic features

of the GBM basins while Fig. 3 shows the seasonality in

the hydrology of these three river basins, with large

variations between the monsoon and nonmonsoon

months’ rainfall and river flow.

2. Proposed ReqSim flood forecasting model

a. Modeling framework: Requisite simplicity

Three rivers in the GBM basins show significant day-

to-day persistence. Rahman et al. (2004), Akhtar et al.

(2009), and Jiang et al. (2016) developed a simple flood

forecasting method for the Ganges using flow persis-

tence as the keymechanism for prediction. In this paper,

motivated by the idea of requisite simplicity, we re-

visited the utility of flow persistence to develop a linear

flood-forecasting scheme for the GBM basins. An au-

tocorrelation function (ACF) quantifies the flow per-

sistence by estimating the correlation function between

times t and t1k and is computed as

ACF(k)5
�

N2K

k51

[(X
t
2m)(X

t1k
2m)]

s2
, (1)

whereXt andXt1k are streamflow data at time t and t1k

separated by lag k, and m and s are the mean and

standard deviation of streamflow X. We considered the

TABLE 1. The physical and hydrological features of the GBM river basins. Public Works Datum (PWD) is approximately 0.46 m below

mean sea level.

Parameter Ganges (discharge and

WL at HB)

Jamuna (discharge

and WL at

Bahadurabad)

Meghna

(discharge and WL

at Bhairab Bazar)

Barak

(UM; discharge and

WL at Amalshid)a

Basin area (km2)b 1 087 300 543 400 82 000 24 600

As % of total area of

the basin (as % of total

area of the country)b

India 79 (26) 36 (6) 57 (1) 100 (0.03)

China 3 (0.3) 50 (3) — —

Nepal 14 (100) — — —

Bangladesh 4 (32) 7 (27) 43 (24) —

Bhutan — 7 (100) — —

Average annual rainfall within the basin (mm)c 1200 1900 4900 2350

Average annual discharge (m3 s21)c 11 300 20 200 4600 1075

Discharge (m3 s21)c Average flood 52 000 70 000 13 700 4000

Average low flow 600 4250 — 230

Water level (m, PWD)c Average max 13.70 19.10 6.00 17.00

Average min 5.40 13.60 1.50 6.20

Flood danger level (m, PWD)d 14.25 19.5 6.25 15.85

a Calculated by authors.
b FAO (2016)
c Sarker et al. (2003)
d FFWC (2016)
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river flow as second-order stationary with constantmean

and variance. During the monsoon season of the GBM

basins (June–September), the ACF of the daily Ganges,

Brahmaputra, and UM (Barak) flow shows a strong

persistence up to several days (Fig. 4), providing a

rationale to explore the potential of a ‘‘persistence’’-

based linear model. We extended the persistence model

further by introducing the domain-average past and

forecasted rainfall of the upstream basin areas and their

flow travel lag times (i.e., time required for runoff to

FIG. 3. (left) The seasonality of the average monthly discharge and (right) rainfall–discharge relationship of the

GBM basin at HB, Bahadurabad, and Amalshid. The box-and-whisker plots in the left panels show the upper and

lower quartiles deviated from the median as a box. The whiskers, the lines extending vertically from the boxes,

indicate variability (maximum andminimum) outside the upper and lower quartiles of monthly average flow. In the

right panels, monthly rainfall is plotted on the primary y axis, with values in reverse order.
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travel from the upstream domain to the downstream

forecast location) into the forecasting scheme.

We therefore present three regression-based ReqSim

models in this paper: 1) flow persistence (QQ), 2) flow

persistence with observed rainfall (QQ1ObsR), and 3)

flow persistence with observed and forecasted rainfall

(QQ1ObsR1ForeR). All three models utilize flow

persistence denoted by QQ that can either be the

streamflow or WL of forecast location. The QQ1ObsR

model uses observed upstream basin rainfall while the

QQ1ObsR1ForeR model adds forecasted rainfall

along with past observed rainfall into its regression.

From this point onward, we will refer observed rainfall

as ‘‘ObsR’’ and forecasted rainfall as ‘‘ForeR.’’

1) QQ MODEL

The strong persistence of daily streamflow up to

several days provides the opportunity of using a

persistence-based QQ model. A simple QQ model,

therefore, is

Q
t1n

5a
n
Q

t
1b

n
Q

t21
1 g

n
, (2)

whereQt1n is the forecasted streamflow orWL of n days

lead time; Qt and Qt21 are the observed streamflow or

WL on forecast day t and previous day t2 1, re-

spectively; an and bn are model coefficients related to

persistence; and gn is the regression interception

coefficient.

2) QQ1OBSR MODEL

A detailed mechanistic rainfall–runoff transformation

model is desirable to convert upstream rainfall to

downstream flow conditions. Given the size of the basin,

lack of detailed data from upstream regions, and diffi-

culty of calibrating and validating model parameters for

such a model, we opted to use a simple linear trans-

formation of rainfall to runoff. Division of the entire

basin into four large domains and their corresponding

flow travel times to downstream forecast locations (see

section 2b) helped us to calculate the daily space ag-

gregated (i.e., averaging domainwide rainfall) and then

time aggregated (i.e., averaging daily domain rainfall

fromminimum to maximum flow travel time) rainfall by

using Eq. (4). For example, our isochrone analysis shows

that runoff from most upstream domains of the Ganges

(domain I) located in the western Ganges takes up to

19–25 days to arrive at HB in Bangladesh (Fig. 5). In

other words, rainfall that occurs in the Ganges domain I

19–25 days before has a contribution to current Ganges

flow at HB. Similarly, runoff from domains II, III, and

IV of the Ganges may take 13–18 days, 8–12 days, and

0–7 days, respectively, to arrive at HB. Therefore, we

averaged the past daily rainfall of domain I (19–25 days),

domain II (14–18 days), domain III (8–13 days), and

domain IV (0–7 days) to get the space–time-aggregated

rain signals RI, RII, RIII, andRIV, respectively, which can

be considered linearly correlated to current HB flow. A

similar approach has been applied to the Brahmaputra

and UM (Barak) basin for calculating their space–time-

aggregated domain rainfall.

It is important to note that when space-aggregated

daily rainfall is compared against downstream daily

streamflow of the basin, it is hard to establish any direct

‘‘linear’’ relationship between the two due to noise in

the daily rainfall (Fig. 6, left). But if we compare space–

time-aggregated domain rainfall with the application of

the average flow travel time lag of each domain, then the

rainfall becomes more correlated to the downstream

streamflow (Fig. 6, right). Hence, a space–time-aggre-

gating process helps to establish a near-linear correla-

tion between upstream domain rain and downstream

streamflow (i.e., high upstream rain to high downstream

streamflow or vice versa). The regression structure of

the ReqSimmodel utilizes the same linear correlation in

its parameter estimation and prediction. Figure 7a

shows how downstream flow of the Ganges on the day

of the forecast responds to past rain signals of four up-

stream domains, while Fig. 7b illustrates the predicted

response of downstream flow at a 10-day forecast hori-

zon given observed rainfall within three upstream do-

mains. The fourth, or most downstream, domain does

not contribute to the 10-day forecast because its time of

concentration is shorter than the forecast window.

Because of a relatively large lag time between the

upstream rainfall and corresponding downstream

streamflow in a large river basin like the Ganges,

FIG. 4. The ACF of the GBM river flow.
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upstream rainfall has the potential to be a good pre-

dictor of downstream flow (Akhtar et al. 2009). This

observation provides the rationale of incorporating up-

stream observed rain (ObsR) information into the flow

persistence orQQmodel to develop the flow persistence

with observed rainfall (QQ1ObsR) model. The struc-

ture of the QQ1ObsR model is

Q
t1n
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n
Q
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1b

n
Q
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where Qt1n, Qt, Qt21, an, bn, gn, and n are as in Eq. (1);

RI, RII, RIII, and RIV are lagged space–time-aggregated

domain rainfall of domains I, II, III and IV, respectively

(Figs. 5–7); and an, bn, cn, and dn are model coefficients

related to the upstream rainfall of each of the four do-

mains. ParametersTi,max andTi,min are themaximum and

minimum flow travel times (in days) for domain i (I–IV),

while t is the forecast day (i.e., 0 day), and n is the

forecast lead time (1–10 days). If t2Ti,max 1n and/or

t2Ti,min 1n . t, then the observed rainfall data up to

the forecast day is considered in the QQ1ObsR model.

For example, let us assume we want to generate Ganges

forecasts for a 10-day lead time; so, n5 10 and forecast

day t5 0. Calculating the rainfall for domain III of the

basin (flow travel time is 8–13 days) would require

rainfall from (02 13 1 10) days to (0 2 81 10) days of

rain, that is, from 3 days past rainfall to 2 days future

rainfall. Since, the QQ1ObsR model does not consider

forecasted rain in its regression, the domain III rainfall

calculation includes rain from the past 3 days only, that

is, no future rain is considered.

3) QQ1OBSR1FORER MODEL

The structure of the QQ1ObsR1ForeR model is

similar to the QQ1ObsR model; the only difference

is it uses ForeR in its regression equation along

with the ObsR. For example, if t2Ti,max 1n and/or

t2Ti,min 1 n. t, where t is the forecast day (i.e., 0 day),

then forecasted rain of m lead time is considered in the

QQ1ObsR1ForeR model for domain i, providing

that t2Ti,max 1 n and t2Ti,min 1 n # t 1 m. Figure 7c

demonstrates the 10-day (i.e., n 5 10) Ganges fore-

casting process by using 6 days of forecasted rain (i.e.,

m 5 6) applied in the QQ1ObsR1ForeR model.

b. Upstream basin domains and flow travel time

We applied the spatial hydrological analyst (SHA) of

ArcGIS and spatially distributed unit hydrograph

(SDUH) concept (Maidment 1993) to estimate the flow

travel timemap or isochrones. An isochrone is a contour

joining points in the watershed separated by the same

travel time from the outlet (Roy and Thomas 2017). The

SHA first determines the flow direction, flow accumu-

lation, flow path, and slope by using an eight-direction

pour-point algorithm (Narayan et al. 2013) and calcu-

lates the initial flow travel time by using the mean ve-

locity of each flow path derived from the flow path slope

FIG. 5. Isochrones of the GBM basin with flow travel times of the four large domains.
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and land-use features like curve number and roughness

coefficient (i.e., Manning’s n). The SDUH method then

establishes the excess rainfall in each raster cell of the

watershed, develops a time area histogram, and calcu-

lates unit hydrograph ordinates, which are nothing but

the incremental area divided by the representative time

interval (Roy and Thomas 2017). The SHA operation

then updates the initial flow travel time by using unit

hydrograph ordinates, revises flow travel through each

cell along the flow path, and finally calculates the travel

time of surface water flow from each raster cell in the

watershed to the basin outlet.

FIG. 6. GBM flow with domain-average upstream rainfall during the 2007 monsoon. The domain rainfall is

plotted on the primary y axis with values in reverse order, while the downstreamdaily flow at forecast locations is on

secondary y axis. (left) Daily domain-averaged (space aggregated) rainfall compared with downstream daily

streamflow at the forecast location. (right) Domain and flow travel time-averaged (space–time aggregated) rainfall

compared with downstream daily streamflow at the forecast location.
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Figure 8 shows the separated isochrone zones in one

of the subbasins of the Ganges basin and schematized

illustration of the SDUH method. The SHA operation

employs the Shuttle Radar Topography Mission

(SRTM)-generated digital elevation model (DEM) of

90-m resolution (Jarvis et al. 2008) and global mosaics of

the standard (MODIS) land cover (MCD12Q1) of 50

resolution (Friedl et al. 2010). We divided the entire

basin into four large domains by merging smaller sub-

basins and calculated maximum and minimum flow

travel times using isochrones. The calculated flow travel

time of theGanges domains I–IV are 19–25, 14–18, 8–13,

and 0–7 days, respectively. For the Brahmaputra, they

are 15–25, 8–14, 4–7, and 0–3 days, and for the UM

(Barak) they are 11–15, 7–10, 4–6, and 0–3 days, re-

spectively (Fig. 5).

c. Datasets used in the study

We used historical records of daily rated discharge

(streamflow) and measured WL data of HB (Ganges),

Bahadurabad (Brahmaputra), and Amalshid (UM–

Barak) in our model. We collected these data from

FFWC over 1998–2015. FFWC calculates rated dis-

charge by applying measured WL-discharge rating

equations (Hopson and Webster 2010). We also con-

sidered two sets of gridded rainfall data: first, the near-

real-time observed rainfall data of Tropical Rainfall

Measuring Mission (TRMM) 3B42V7 with 0.258 resolu-
tion (https://pmm.nasa.gov/data-access/downloads/trmm)

over 1998–2015, and second, 1–6-day forecasted rainfall

for 2014–15 generated by the Weather Research and

Forecasting (WRF) Model and collected from IWM,

Bangladesh.

d. Model parameters

In the ReqSim QQ1ObsR and QQ1ObsR1ForeR

models, we have two persistence coefficients, an and bn,

that correspond to forecast day’s and previous day’s

streamflow or WL variable, and four rainfall co-

efficients, an, bn, cn, and dn, corresponding to four up-

stream domain rainfalls along with the interception

coefficient gn. In this section, we provide a discussion on

the parameters of theQQ1ObsR1ForeRmodel only, the

values of which we found from regression fitting for the

validation period (1998–2006) and kept unchanged for

the calibration period (2007–15).

Figure 9 shows an interesting insight about how the

influence of rain coefficients grows with forecast lead

FIG. 7. Illustration of the ReqSim model structure of the Ganges basin. Upstream rainfall aggregation for

(a) today’s Ganges flow, (b) for 10-day Ganges forecasts using the QQ1ObsR model, and (c) 10-day Ganges

forecasts using the QQ1ObsR1ForeR model.
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time while the influence of persistence coefficients first

reaches its peak at 3–4 days lead time and then goes

down with further lead time increases for all three river

basins. For the Ganges, the influence of the first three

upstream or remote domains’ (i.e., domain IV, III, and

II) rainfall grows almost consistently with forecast lead

time, suggesting that with increasing forecast lead time

the influence of aggregated domain rainfall becomes

more responsive to the downstream forecasted

streamflow. Domain I rainfall, which is the nearest do-

main from forecast location HB, has almost no influence

on the Ganges forecasts. For the Brahmaputra, the in-

fluence of the nearest two domains (i.e., domains IV and

III) from the forecast location Bahadurabad remains

consistent from 1 to 10 days lead time, whereas the in-

fluence of remote domains II and I becomes noticeable

from 5 days lead time. For the UM or Barak, domain

separation is different from the other two river basins.

FIG. 8. Channel routing by the SDUHmethod: (a) defining the flow path in a watershed, (b) calculating flow travel time of each cell in

the watershed, (c) watershed is divided into areas of isochrones or flow travel time zones, (d) drainage area of each isochrone, (e) the

cumulative time–area diagram, (f) slope of the time–area diagram provides the unit hydrograph ordinate, and (g) unit hydrograph or-

dinates from the individual isochrones area accumulates to the total discharge and revised travel time calculation [adapted from

Maidment (1993) and Koo et al. (2005)].

FIG. 9. Regression parameters of the ReqSim QQ1ObsR1ForeR model for the GBM basin. The primary y axis presents four rain-

associated coefficients a, b, c, and d for domain rainfall RI, RII, RIII, and RIV, respectively, while the secondary y axis shows persistence

coefficients a and b for streamflow Qt and Qt21, respectively.
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Domains IV and III of the UM are two independent

watersheds, and the flows of these two domains join just

upstream of the UM forecast location at Amalshid.

Therefore, the influence of these domains’ rainfall to

downstream forecasts does not follow a sequential pat-

tern as is seen for the Ganges or the Brahmaputra basin.

The influence of the domain IV rainfall of UM reaches its

maximum at 3-days lead time, then reduces slightly at

4 days and remains consistent for the remaining lead time.

The noticeable influence of UM domain III rain, on the

other hand, starts after 3 days lead time and reaches its

peak at 6 days, reduces slightly at 7 days, and remains

consistent up to 10 days lead time.

e. Model performance evaluation

The model performance was evaluated using standard

statistical model evaluation techniques applied in Moriasi

et al. (2007), such as mean error (ME), mean absolute

error (MAE), RMSE, coefficient of determinationR2, and

NSE. To find more on these techniques, please see Gupta

et al. (1999), Singh et al. (2005), and Moriasi et al. (2007).

3. Results

a. Forecasts findings

We used GBM streamflow or WL data (for flow or

water level forecasting, respectively) along with

TRMM rainfall data over 1998–2015 in our ReqSim

models. The results discussed here are based on fore-

casts during flood season (July–October) of the vali-

dation period (2007–15) only, unless the forecast type

and period is mentioned specifically.

The ReqSim model with flow persistence and flow

persistence plus observed rain model provide almost

identical results up to 5-day Ganges forecasts at the HB

location (Tables 2, 3; Fig. 10), suggesting that inclusion

of ObsR in the QQ model does not appreciably change

the forecasting accuracy up to 5 days lead time for this

basin. For example, NSE only improves from 0.88 to

0.92 for 5-day Ganges flow forecasts (Table 2). On the

other hand, improvement of the QQ1ObsRmodel over

QQ is small up to 3 days lead time for the Brahmaputra

at Bahadurabad and UM (Barak) at Amalshid. The

NSE improves from 0.90 to 0.92 for the Brahmaputra

and from 0.79 to 0.83 for the UM up to 3 days forecast

lead time.

Enhancement of forecasting accuracy with the addi-

tion of upstream rainfall is noticeable beyond 5 days for

the Ganges and 3 days for the Brahmaputra and UM

(Barak) forecasts. The NSEs of the QQmodel for 7- and

10-day forecasts are 0.78 and 0.62, which improves up to

0.87 and 0.79 when ObsR is used in the Ganges

QQ1ObsR model. For the Brahmaputra, the NSEs of

the QQ model for 5-, 7-, and 10-day flow forecasts are

0.74, 0.56, and 0.32, respectively. The accuracy improves

considerably when ObsR is included in the regression;

resulting NSE values are 0.83, 0.74, and 0.53, re-

spectively. Adding domain rainfall into the UM or

Barak QQ1ObsR model does not improve the forecast

performance as much as it does for the other two bigger

basins. The NSE value merely increases from 0.62 to

0.67 for 5 days, from 0.51 to 0.55 for 7 days, and from 0.38

to 0.41 for 10-day UM flow forecasts.

In theprocess of addingForeR into theReqSimmodel,we

first investigated the potential benefit of using ForeR at dif-

ferent lead times. In doing so, we considered TRMM’s past

ObsR as ForeR with a notion of using a ‘‘perfect forecast’’

rainfall. We will refer to this rainfall as ForeRP, with the

ReqSim model name QQ1ObsR1ForeRP. This analysis

provides a quantitative measure of the utility of using

ForeR to enhance the forecasting accuracy of the GBM.

For example, the left panels of Fig. 10 clearly show that the

TABLE 2. Streamflow forecasting performance of the ReqSim models for the GBM during July–October over the period 2007–15.

Performance

evaluation

indicators

QQ QQ1ObsR QQ1ObsR1ForeRP

Basin name 3 days 5 days 7 days 10 days 3 days 5 days 7 days 10 days 3 days 5 days 7 days 10 days

Ganges MAE (m3 s21) 1758 3165 4540 6196 1654 2694 3529 4566 1654 2687 3480 4341

RMSE (m3 s21) 2593 4380 5973 7875 2393 3623 4595 5871 2393 3594 4494 5552

R2 0.96 0.88 0.78 0.63 0.97 0.93 0.89 0.83 0.97 0.93 0.9 0.86

NSE 0.96 0.88 0.78 0.62 0.97 0.92 0.87 0.79 0.97 0.92 0.88 0.81

Brahmaputra MAE (m3 s21) 3668 6024 8081 10 553 3269 5033 6409 8848 3269 4993 6167 7256

RMSE (m3 s21) 5475 8724 11 320 14 078 4711 7022 8696 11 627 4711 6907 8165 9428

R2 0.9 0.74 0.57 0.35 0.92 0.83 0.74 0.54 0.92 0.84 0.78 0.71

NSE 0.9 0.74 0.56 0.32 0.92 0.83 0.74 0.53 0.92 0.84 0.77 0.69

UM (Barak) MAE (m3 s21) 403 569 665 763 358 529 640 745 337 468 548 626

RMSE (m3 s21) 552 732 836 943 498 683 798 920 477 623 714 806

R2 0.79 0.63 0.52 0.39 0.83 0.68 0.56 0.42 0.84 0.74 0.66 0.57

NSE 0.79 0.62 0.51 0.38 0.83 0.67 0.55 0.41 0.84 0.73 0.64 0.54
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improvement in 10-day flow forecast accuracy is marginal

beyond the use of 5–6 days of ForeR for the Ganges, 6–7

days for theBrahmaputra, and 8 days of ForeR for theUM

(Barak) forecasts. These findings also suggest that the

upstream basin rainfall of the last 4–5 days and 3–4 days

may have little effect, respectively, on today’s HB

(Ganges) and Bahadurabad (Brahmaputra) flow. For

Amalshid (UM) flow, thismay be true for the last 2 days of

rainfall. Therefore, we maintained 4 days of lag for the

Ganges and Brahmaputra and 2 days of lag for the UM

between the applied forecasted rain’s maximum lead time

and target streamflow or WL forecast lead time in the

QQ1ObsR1ForeRP model. For example, we utilized 6,

3, and 1 days of ForeR for generating 10-, 7-, and 5-day

Ganges and Brahmaputra forecasts, respectively, in the

model, whereas we used 8, 5, and 3 days of ForeR for the

UM (Barak) forecasts. The right panels of Fig. 10 appro-

priately show that adding ObsR alone to the QQ model

improves the Ganges and Brahmaputra forecasts appre-

ciably. After adding ForeR to the QQ1ObsR model, the

forecast performance continues to improve further. But the

relative improvement ofQQ1ObsR1ForeRPmodel over

QQ1ObsR model for the Brahmaputra is significantly

higher than that of Ganges. On the contrary, noticeable

improvement occurs for the UM (Barak) forecasts only

after adding ForeR to the QQ1ObsR model.

It appears that smaller and flashier river basins with

shorter flow travel times (and hence, shorter persistence)

are likely to benefit more from using forecasted rain-

fall than the basins with longer persistence in our lin-

ear model. The reason behind this is directly related

to the geophysical features of the river basin, its

rainfall–runoff dynamics, river morphology, and

slopes. The slope of the Brahmaputra River starting

from domain II is considerably higher than that of the

Ganges River, and it is true even for the most down-

stream river reaches. For example, the Brahmaputra

River slope at Bahadurabad (i.e., 7.5 cmkm21) is 1.5

times higher than the Ganges at HB (i.e., 5 cmkm21;

Sarker et al. 2003). On the other hand, domain IV of

the UM (Barak) is extremely flashy with a high river slope

compared to domain III, and our analysis shows that these

two domains are independent watersheds. Overall, the

slope and related dynamics in rainfall–runoff of these

rivers are appropriately captured by the basin’s domain

travel time (section 2b). Both the domain rainfall amount

and flow travel time dictate how sensitive a particular do-

main’s rain will be to downstream river hydrologic condi-

tions. As flood forecast lead time increases, the ReqSim

linear model receives responses from domain III and II

rain signals in predicting downstream floods for the

Brahmaputra or UM more than the Ganges. This is the

most plausible reason why the gains from including fore-

casted rainfall were higher in the Brahmaputra or UM

than in the Ganges river basin in our model.

It is clear from both statistical (Tables 2, 3) and

graphical evaluation (Figs. 11–13 ) that the performance

of our ReqSim persistence with ObsR (QQ1ObsR) and

persistence with observed and forecasted rainfall

(QQ1ObsR1ForeRP) models are encouraging for the

Ganges andBrahmaputra up to 10 days lead time. Given

the nature of services and information disseminated by

the flood forecasting agencies to the people, the 10-day

flow forecasts with accuracy indicated by R2 of 0.86

and NSE of 0.81 for the Ganges and R2 of 0.71 and

NSE of 0.69 for the Brahmaputra are expected to be

operationally valuable in the FFWC’s current flood

forecasting activities and can minimize the impacts of

TABLE 3. WL forecasting performance of the ReqSim models for the GBM during July–October over the period 2007–15.

Performance

evaluation

indicators

QQ QQ1ObsR QQ1ObsR1ForeRP

Basin name 3 days 5 days 7 days 10 days 3 days 5 days 7 days 10 days 3 days 5 days 7 days 10 days

Ganges ME (m) 20.01 20.03 20.05 20.1 0.01 0.04 0.07 0.09 0.01 0.04 0.06 0.09

MAE (m) 0.20 0.35 0.50 0.69 0.17 0.26 0.34 0.43 0.17 0.26 0.31 0.37

RMSE (m) 0.31 0.49 0.65 0.87 0.25 0.35 0.43 0.55 0.25 0.35 0.40 0.47

R2 0.96 0.89 0.8 0.66 0.97 0.94 0.91 0.86 0.97 0.94 0.92 0.9

NSE 0.95 0.88 0.79 0.63 0.97 0.94 0.91 0.85 0.97 0.94 0.92 0.89

Brahmaputra ME (m) 0.01 0.01 0.01 0 20.01 20.02 20.03 20.01 20.01 20.03 20.04 20.05

MAE (m) 0.22 0.36 0.48 0.65 0.18 0.27 0.35 0.51 0.18 0.26 0.31 0.37

RMSE (m) 0.31 0.48 0.63 0.82 0.25 0.37 0.47 0.65 0.25 0.35 0.41 0.48

R2 0.93 0.83 0.7 0.51 0.95 0.9 0.84 0.68 0.95 0.91 0.88 0.83

NSE 0.93 0.82 0.7 0.5 0.95 0.9 0.83 0.68 0.95 0.91 0.87 0.83

UM (Barak) ME (m) 0 0.01 0.02 0.02 0.03 0.04 0.05 0.03 0.04 0.09 0.12 0.14

MAE (m) 0.76 1.10 1.31 1.49 0.66 1.00 1.23 1.44 0.64 0.88 1.04 1.14

RMSE (m) 0.99 1.37 1.63 1.86 0.86 1.24 1.53 1.80 0.82 1.10 1.29 1.42

R2 0.85 0.71 0.59 0.47 0.89 0.76 0.64 0.5 0.9 0.81 0.74 0.69

NSE 0.85 0.71 0.59 0.46 0.89 0.76 0.64 0.5 0.89 0.81 0.74 0.69
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floods. The forecasting skill for the UM (Barak) basin at

Amalshid is limited within 5–7 days lead time with the

application of our linear scheme. TheR2 andNSE values

are 0.74 and 0.73 for 5-day and 0.66 and 0.64 for 7-day

Amalshid flow forecasts, respectively. The 10-day flow

forecasts are somewhat limited, with R2 and NSE values

of 0.57 and 0.54, respectively.

We have also tested ourReqSimmodels by applyingWL

data instead of streamflow into the model structure and

found even better forecasting accuracy (Tables 3 and 4).

FIG. 10. (left) The 10-day flow forecasting capability of the QQ1ObsR1ForeR model with the addition of

ForeRP from 1 to 10 days lead time. The NSE and RMSE are shown on the primary and secondary y axes, re-

spectively. These panels show how 10-day flow forecasts improve first with the addition of 5–6 days of forecasted

rain in the model for the Ganges and Brahmaputra and 8 days of forecasted rain for the UM (Barak) and then

decrease or remain the same with the forecasted rain’s lead time increase. (right) Improvement of the flow fore-

casting capability of the QQ1ObsR andQQ1ObsR1ForeRmodels over theQQmodel for the GBM river basins;

6, 3, and 1 days of forecasted rain were used for 10-, 7-, and 5-day Ganges and Brahmaputra forecasts, respectively,

whereas 8, 5, and 3 days of forecasted rain were used for the UM (Barak) forecasts.
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A probable reason for this could be related to the un-

certainty introduced by the streamflow derivation from the

rating curve usingWLmeasurements. UsingWLdirectly in

the linearmodelsmay correlate to the rainfall events slightly

better than the rated discharge and provide higher fore-

casting accuracy. Overall, WL forecast accuracy withMAE

andRMSE less than 0.35 and 0.45m, respectively, for 7-day

lead time and 0.40 and 0.5m, respectively, for 10-days lead

time for large rivers like the Ganges and Brahmaputra

could be regarded as a significant achievement, particularly

considering the volume of water these rivers bring into

Bangladesh during the flood season. We also tested

streamflow forecasts by converting to WL using FFWC’s

rating equations and found almost identical forecasting

FIG. 11. The streamflow forecast comparison of the Ganges at 5, 7, and 10 days lead time for 2007–13. The comparisons for 2014–15 are

shown in Fig. 14.
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accuracy compared with WL forecasts obtained

independently.

b. Incorporating forecasted rainfall

To simulate a more realistic application scenario, we

used WRFModel outputs as a source of ForeR data for

the GBM basins over the 2014–15 period in our model.

We will refer to this forecasted rain as ForeRW, with

the ReqSim model name QQ1ObsR1ForeRW. This

version of our model provides an estimate of the

operational forecasting accuracy that our model could

achieve for the GBM basin with the use of WRF fore-

casted rainfall. The WRF Model (https://www.mmm.

ucar.edu/weather-research-and-forecasting-model)

is a mesoscale numerical rainfall prediction model

customized and downscaled for South Asia and is run

every day at IWM for generating weather forecasts with

1–6 days lead time. Both statistical (Table 4) and

graphical (Fig. 14) evaluation of QQ1ObsR1ForeR

model results with the use of TRMM’s perfect forecast

FIG. 12. As in Fig. 11, but for the Brahmaputra.
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rain and WRF’s forecast rain reveal almost similar

Ganges and Brahmaputra forecasts for the flood season

in 2014 and 2015. These comparisons suggest that our

model with the use of forecasted rainfall fromWRF (i.e.,

QQ1ObsR1ForeRW) could provide comparable results

to that we have found with our use of a perfect forecast

rainfall (i.e., QQ1ObsR1ForeRp) for 2007–13.

A valid question one may ask: How does the ReqSim

model provide such an encouraging forecasting accuracy

given the limited accuracy of the near-real-time rainfall

product from TRMM (i.e., ForeRp) or WRF forecasted

product (i.e., ForeRW)? Our assessment is that in fore-

casting accuracy for large basins like the GBM, absolute

accuracy of rainfall is less important than the ability of

TRMM or WRF rainfall products to capture large-scale

rainfall patterns as an input to the ReqSim model. In

general, despite limited accuracy in estimating rainfall

magnitude, numerical weather forecasts or satellite esti-

mates of rainfall could produce considerably more accu-

rate spatial coverage of large-scale rain scenarios such as

FIG. 13. As in Fig. 11, but for UM (Barak).
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rain and no-rain or low rain and heavy rain (Islam et al.

2010; Bajracharya et al. 2015). Altogether, the findings

presented above provide more supporting evidence that

the ReqSim model may qualify as an encouraging flood

forecasting tool for operational purposes.

c. Comparison between proposed ReqSim and
existing operational products

We compared results of our ReqSim model with

current operational methods such as Jason-2 WL and

CFAN streamflow forecasting schemes for Bangladesh

flood forecasting. The Jason-2 WL forecasts are avail-

able in Hossain et al. (2014a,b), whereas we collected

CFAN forecasts (Webster et al. 2010) for the 2004–13

monsoons from FFWC (who is the end user of this

forecast product), not from the original primary ref-

erenced source mentioned earlier. We considered the

ensemble mean of CFAN’s 51 daily probabilistic

forecasts at HB (Ganges) and Bahadurabad (Brah-

maputra) for the comparison.Webster et al. (2010) also

did the same to present CFAN’s forecast performances

in their paper.

TABLE 4. Performance of the ReqSim QQ1ObsR1ForeR model with the application of ForeRP and ForeRW rain during July–October

over the period 2014–15.

Basin name

Performance

evaluation

indicators

Streamflow forecasts (m3 s21) WL forecasts (m)

QQ1ObsR1ForeRP QQ1ObsR1ForeRW QQ1ObsR1ForeRP QQ1ObsR1ForeRW

5 days 7 days 10 days 5 days 7 days 10 days 5 days 7 days 10 days 5 days 7 days 10 days

Ganges MAE 2355 2970 3581 2382 3102 3943 0.27 0.32 0.35 0.28 0.34 0.43

RMSE 3102 3786 4469 3161 3994 5096 0.33 0.37 0.42 0.34 0.41 0.54

R2 0.91 0.87 0.82 0.91 0.85 0.76 0.95 0.94 0.93 0.95 0.93 0.88

NSE 0.92 0.88 0.84 0.92 0.88 0.81 0.96 0.95 0.94 0.96 0.94 0.90

Brahmaputra MAE 5227 6358 6965 4979 5202 6974 0.30 0.38 0.47 0.27 0.35 0.47

RMSE 7109 8431 9139 6748 7114 9203 0.39 0.48 0.57 0.36 0.44 0.58

R2 0.85 0.80 0.76 0.86 0.84 0.74 0.91 0.86 0.81 0.92 0.89 0.80

NSE 0.85 0.79 0.75 0.86 0.84 0.74 0.92 0.87 0.82 0.92 0.89 0.80

FIG. 14. Comparison of (left) Ganges and (right) Brahmaputra flow forecasts applying ForeRP and ForeRW in the QQ1ObsR1ForeR

model during the flood season of 2014 and 2015.
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For the Ganges basin, the R2 of CFAN forecasts at

5, 7, and 10 days lead time are 0.79, 0.67, and 0.57,

respectively. In comparison, our ReqSim QQ1ObsR1
ForeRP model provides improved streamflow forecasts

with R2 of 0.89, 0.86, and 0.81 for respective lead times.

For the Brahmaputra basin, our QQ1ObsR1ForeRP

model provides forecasts with R2 of 0.79, 0.71, and 0.69

for 5, 7, and 10 days lead time, which are identical to

CFAN forecasts with R2 of 0.81, 0.78, and 0.72 for the

respective lead times. Figure 15 shows a graphical

comparison between the results of our ReqSim model

and CFAN ensemble mean forecasts for the 2007

monsoon. Our evaluation of CFAN forecasts closely

matches with the results published in Webster et al.

(2010), with minor differences due to differences in the

evaluation period.

The 20-day (1–20August 2012) performance of Jason-2

WL forecasts shows that the ME and RMSE at HB

(Ganges) are 20.43 and 0.47m and at Bahadurabad

(Brahmaputra) are 20.2 and 0.70m, respectively, for

5 days lead time (Hossain et al. 2014a). Our ReqSim

QQ1ObsR model without considering ForeR gives

close or improved results even for 10 days lead time. For

instance, the ME and RMSE of the 10-day Ganges WL

forecasts are 20.33 and 0.52m, respectively, during the

same period. The respective errors for the 10-day

Brahmaputra WL forecasts are 20.19 and 0.29m, re-

spectively. Hossain et al. (2014b) reported the perfor-

mance of Jason-2–based WL forecasts for the 2013

monsoon (from 1 June to 9 September) by using the

correlation coefficients r and RMSE matrix. For

instance, the r of 8-day WL forecasts at HB (Ganges)

and Bahadurabad (Brahmaputra) are 0.95 and 0.72

and RMSEs are 1.23 and 0.94m, respectively. Our

QQ1ObsR model provides 10-day Ganges and Brah-

maputra r as 0.97 and 0.78, and RMSEs as 0.57 and

0.67m, respectively. After adding ForeR to the model,

Ganges 10-day forecasts improve slightly (e.g., r of 0.98

and RMSE of 0.54m) but significantly for the Brahma-

putra basin (e.g., r of 0.87 and RMSE of 0.53m).

The comparisons presented above clearly imply that

our linear ReqSim model can provide equivalent fore-

casting accuracy to the existing operational techniques

such as CFAN and Jason-2 forecasts at both HB

(Ganges) and Bahadurabad (Brahmaputra) locations.

4. Discussion

This paper explores the utility of using a flood fore-

casting modeling framework with requisite simplicity

FIG. 15. Flow forecasting capability of the ReqSim forecasting models and CFAN for the Ganges and Brahmaputra during the 2007

flood season.
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that identifies key variables and processes of basin hy-

drology and develops ways to track their evolution and

performance. Findings suggest that models with requi-

site simplicity—relying on flow persistence, upstream

aggregated rainfall, and basin travel time—can provide

flood forecasts comparable to relatively more compli-

cated methods for up to 10 days lead time. Three dif-

ferent linear Requisitely Simple (ReqSim) models are

considered: 1) a flow-persistence-based QQ model that

uses lagged streamflow or water level (WL) in its re-

gression; 2) a flow persistence and observed rainfall

(ObsR)-based QQ1ObsR model that uses lagged

streamflow or WL and four upstream domains’ rainfall

lagged with their average flow travel time; and 3) a flow

persistence and observed and forecasted rain (ForeR)-

based QQ1ObsR1ForeR model that incorporates

upstream domains’ ForeR along with past ObsR.

TheGBMbasins show strong persistence in their daily

streamflow inside Bangladesh with lags up to several

days (Fig. 4). For large river basins like these, the current

and previous day’s flow or WLs contain significant

memory in an aggregated form (i.e., basin response

time) that is found to be useful in a simple forecasting

model, as demonstrated with our findings. However, a

persistence model alone cannot provide robust fore-

casting accuracy beyond 4–5 days lead time for the

Ganges, 3 days for the Brahmaputra, and 2 days for the

upperMeghna (Barak)River (Fig. 10). The contribution

of adding upstream ObsR to a persistence model—in a

very simple way by incorporating four large domain-

average rainfalls into the model—appears to signifi-

cantly enhance forecasting lead time.

Inclusion of ForeR to our linear model hardly im-

proves the model performance that considers ObsR

within 8 days lead time for the Ganges, 7 days for the

Brahmaputra, and 4 days for the Meghna River. The

noticeable improvements appear beyond these lead

times, making the ReqSim QQ1ObsR1ForeR model

attractive for the medium-range (7–10 days) forecasts

for these three rivers. Our findings suggest that the up-

stream basin rainfall of the last 3–4 days may have

minimal effect on today’s Hardinge Bridge (Ganges)

and Bahadurabad (Brahmaputra) flow, while it appears

to be for the last 2 days of rainfall for Amalshid (UM)

flow. Consistent with these findings, incorporating

ForeR in the model indicates that there exists an upper

limit of applying ForeR’s lead time in enhancing 10-day

flood forecasting accuracy. For instance, 6–7 days of

ForeR is found adequate for 10-day Ganges and Brah-

maputra forecasts while 8 days of ForeR is necessary for

the UM (Barak) (Fig. 10, left). This is an important

finding because it demonstrates that we may not need

ForeR’s lead time to be equal to the flood forecast’s

target lead time to produce skilled forecasting accuracy

for large (e.g., the Ganges and Brahmaputra) and me-

dium (e.g., the upper Meghna) river basins. It also ap-

pears that ForeR with a longer lead time may be useful

for a flashy river basin like the Brahmaputra and UM

(Barak) (Fig. 10, right).

We have explored the performance of our models

with WL data and obtained even better forecasting ac-

curacy compared to flow forecasts. This indicates a key

strength of our modeling framework, that is, it can be

used for those gauging locations where flow data are

not available continuously. Although we have mainly

discussed our model’s performance for streamflow

forecasts, a quantitative assessment of WL forecast

performance is discussed briefly in the Results section

and shown in Tables 3 and 4. Besides that, Fig. 16

shows a long-term WL forecast performance during the

flood season (July–October) that shows a consistent

performance for both the calibration (1998–2006) and

validation (2007–15) periods. Consistent performance of

our model over a long period may suggest that there has

not been a significant shift in the monsoon’s hydrologic

response processes between 1998–2006 and 2007–15 in

the GBM river basins.

Findings from this study also reveal that large-scale

weather systems—for example, the rainfall pattern over

the GBM basins—captured in satellite estimates (i.e.,

TRMM observations) and weather models (e.g., WRF

forecasts) are useful in a data-driven model to obtain

reasonably accurate GBM forecasts for up to 10 days

lead time without employing any complicated process-

ing techniques. This is of particular importance where

availability and access to gauge-measured data from

upstream basin areas are limited and detailed hydro-

logical modeling are considerably expensive, resource

intensive, and operationally prohibitive.

Our proposed model, however, may not be directly

transferrable to a river basin that is heavily controlled by

upstream regulators where a near-linear relationship

between upstream rain and downstream flow may not

hold. The Ganges river basin is heavily obstructed by a

number of upstream regulators, including the Farakka

Barrage. However, the Farakka Barrage reportedly

operates from the postmonsoon to dry seasons

(November–May) and remains open during flood sea-

son. This allows theGanges to flow almost freely during

flood season, and a near-linear relationship between

upstream rain and downstream flow may still hold,

justifying our use of a linear scheme for the Ganges

during flood season. On the other hand, the Brahma-

putra and upper Meghna (Barak) are not overly regu-

lated, and the proposed linear schemes appear to

work well.
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To apply our method, one needs observed WL or

streamflow data at the forecast location and upstream

basin rainfall from precipitation measuring satellites.

Daily or subdaily rainfall data from 1998 to near–real

time is easily available from TRMM (https://pmm.nasa.

gov/TRMM) for tropical regions of the world. Follow-on

missions such as the Global PrecipitationMeasurement

(GPM) Core Observatory provide even better accu-

racy, latency, and coverage of precipitation from across

the planet (https://pmm.nasa.gov/GPM). The switch

from TRMM to GPM will involve minor changes in

real-time data processing activities (i.e., downloading

and reading data), while updating the model training

period and estimation of parameters will remain simi-

lar. At the same time, the ReqSim model can be easily

calibrated until the previous year monsoon to get

updated parameter values and generate forecasts for

the current year, which in turn is expected to provide

further improved results because of using updated

parameter values fitted for the most recent hydro-

climatology of the basin.

Therefore, if the forecast location shows flow persis-

tence at least for a few days, and the observed rainfall

(ObsR) of upstream basin areas is available in near–real

time, it is possible to apply our ReqSim QQ and

QQ1ObsR model for forecasting floods. To apply our

ReqSim QQ1ObsR1ForeR, one needs forecasted rain

(ForeR) data that may not be available for basins across

the world. But if available, the use of ForeR into the

model is similar to applying ObsR. The basin domain

delineation and estimation of flow travel time are im-

portant steps in our model development. These can

FIG. 16. TheWL forecast performance of the ReqSimmodels during July–October over the period of 1998–2015.

The Ganges and Brahmaputra performances are shown for 7 and 10 days lead time, while lead times are 5 and 7

days for the UM (Barak).
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easily be done by using publicly available GIS tools and

global datasets mentioned in section 2b. Finally, the

total runtime of our ReqSim model is very small, as we

estimated that from downloading data to running the

model to generating and disseminating forecasts to the

national forecasting agency would require a fewminutes

on a day-to-day basis using the easily available compu-

tational capabilities of a laptop computer.

We expect the simplicity of ourmodel structure and use

of easily available data will allow a wide-scale adoption of

our modeling framework for the GBM and other large

river basins around the world. Our results show compa-

rable forecasting accuracy with respect to existing hy-

drologic or hybrid models (Webster et al. 2010; Hopson

and Webster 2010) or satellite altimetry-based WL pre-

diction (Hossain et al. 2014a,b) methods with varying

degrees of complexity, and we consider our current study

as a complementary one to the rich collection of existing

research outputs. More importantly, our proposed

framework is easy to implement and can be customized to

work for any large river basins around the world with

relatively less effort and resource requirements. We hope

the notion of requisite simplicity—examining the trade-off

between modeling complexity and functional utility—will

be used as a guiding principle as we invest more resources

to enhance flood forecasting accuracy of large rivers for

effective preparedness and response.
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