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1 Introduction 12 

Floods cause more than $40 billion in damage annually across the globe, according to 13 

Organization for Economic Cooperation and Development (OECD, 2018). As the world 14 

experiences unprecedented degradation of ecosystem services and increasing climate 15 

variability and change, flooding has become a barrier to sustainable development globally 16 

(WMO, 2018). In Monsoon regions of South Asia, the strong seasonal and inter-annual 17 

variability of the monsoon rainfall and these large transboundary river basins pose a great 18 

challenge to water users and managers alike on how to best manage the resources and achieve 19 

water security in a sustainable manner (Webster et al., 2010; Akanda, 2012). Flood 20 

forecasting thus remains a major challenge in this region and in the field of hydrology and 21 

water resources, requiring considerable research and investment (Biancamaria et al., 2011; 22 

Palash et al., 2018). 23 
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In August 2017, the major river basins of South Asia—the Ganges and the Brahmaputra 24 

(GB) in particular—were affected by devastating floods that caused widespread death, 25 

destruction and agricultural loss. Due to heavy rainfall and subsequent rise in streamflow of 26 

the rivers, the August 2017 floods inundated a large part of India, Nepal and Bangladesh 27 

(Figure 1a); over a thousand people died and 40–45 million people were affected (Gettleman, 28 

2017; Siddique, 2017; SADN, 2017). While the death and destruction that a flood brings are 29 

tragic, it presents an opportunity to explore and learn necessary lessons about the 30 

hydrometeorology of these river basins and identifies future actions on flood response 31 

(SADN, 2017). 32 

Observed rainfall data of the GB basins from gauges in upstream nations are not readily 33 

available on a real time basis. This is also true for several other large river basins around the 34 

world, where upstream data is prohibited or difficult to collect for downstream nations 35 

(Palash et al., 2018). Thus, the hydrology community around the world is increasingly relying 36 

on satellite and weather model driven rainfall data for prediction of floods (Biancamaria et 37 

al., 2011; Hirpa et al., 2013). Simultaneously, assessing the accuracy of these non-gauge 38 

datasets is getting enormous importance and traction in recent times (Bajracharya et al., 39 

2014). Therefore, a detail examination of non-gauge rainfall dataset’s ability to capture peak 40 

rainfall event prior a large flood like the August 2017 GB flood is warranted.  41 

Although the flood caused widespread damage in parts of Nepal, Eastern India and 42 

Northern Bangladesh and generated worldwide attention, the actual flood events were short 43 

lived. The hydrometeorology that prevailed before and during the 2017 floods has been partly 44 

discussed in several recent publications, Alfieri et al. (2018), Hossain et al. (2019) and Philip 45 

et al. (2018); however, key knowledge gaps remain in understanding the evolution of the 46 

flood in the context of the GB region hydrometeorology and the basin rainfall-runoff 47 

mechanisms at work during 2017 August that have not been fully explored yet.  48 
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From August 5, 2017, the eastern part of the Ganges and southwest part of the 49 

Brahmaputra basin received continuously high rainfall until mid-August, which led to a sharp 50 

rise in Brahmaputra and a steady rise in Ganges water level (WL). The Brahmaputra river in 51 

western Assam and northern Bangladesh crossed its danger level (DL) on August 14, reached 52 

its recorded highest WL two days later and receded back to below DL on August 20. The 53 

Ganges river was still on the rise in Bihar, West Bengal (India) and eastern Bangladesh, 54 

reached very close to DL on August 25 and started receding three days later.  55 

On August 12, the Global Flood Awareness System (GloFAS), jointly developed by the 56 

European Commission (EC) and the European Centre for Medium-Range Weather Forecasts 57 

(ECMWF), issued a forecast that the Ganges and Brahmaputra (GB) basins would face major 58 

floods in the next 10 days with a possibility of occurring a 200-year flood in the Brahmaputra 59 

basin (http://www.globalfloods.eu/). The GloFAS’s prediction were covered widely in local 60 

media and led to nervous response among the people of Bangladesh who live in the most 61 

downstream regions of these basins. For instance, nearly all national print and electronic 62 

media of Bangladesh reported the prediction widely by referring ECMWF where some of the 63 

news headlines read like these: “the largest flood is coming, could exceed 1988 floods” 64 

(Prothom Alo, August 14); “the largest flood in 200 years is predicted” (Manabzamin, 65 

August 14); “most fearful flood in the history of the country is expected” (Banikbarta, August 66 

14, 2017); “people have not seen flood like this before” (Prothom Alo, August 20, 2017). 67 

Important to note that, no other international, regional, or local agencies came up with such a 68 

prediction during that time.  69 

In reality, the Brahmaputra flood flow measured inside Bangladesh during mid-August 70 

corresponds to a 65–75-year return period flood (according to our analysis), which is 71 

recorded highest flood event for this river basin also. The Ganges peak flood flow during the 72 

same period was an average flood event. So, a record flow in the Brahmaputra and an average 73 
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flow in the Ganges, despite nearly a peak flow synchronization, did not generate as large a 74 

flood as 1988 or 1998, when nearly two-thirds of the country went under water (Mirza et al., 75 

2001). However, the magnitude of the 2017 floods in the Brahmaputra basin caught the basin 76 

nations by surprise (Chowdhury, 2017; SANDRP, 2017a). 77 

The challenges and opportunities of forecasting large river basins like the GB basins by 78 

using a simpler modeling framework called Requisitely Simple (ReqSim) flood forecast 79 

model, which was run on a real-time basis during 2017 flood, are also discussed in this paper. 80 

The key questions that we attempt to answer in this paper, therefore, are: a) How severe was 81 

the rainfall preceding the flood events of August 2017, and how successfully was that 82 

captured in various satellite and numerical weather model generated observed and forecasted 83 

data? b) What led to a 200-year flood warning in the Brahmaputra basin and what happened 84 

in reality?, c) How did the ReqSim model perform in capturing the 2017 Brahmaputra floods 85 

in north Bangladesh?, and d) Can the ReqSim model be adapted for local scale forecasts of 86 

streamflow in downstream river points inside Bangladesh? 87 

2 Materials and Methods 88 

Satellite and weather model generated rainfall are known to produce poor agreement at 89 

day-to-day or point-to-point data comparisons (Bajracharya et al. 2014). Rather these 90 

datasets show reasonable accuracy in capturing synoptic rainfall pattern over a large area or 91 

temporal aggregation of point rainfall or a combination of both (i.e., space-time aggregated 92 

rainfall) (Bajracharya et al. 2014; Palash et al. 2018). So, we first compared the spatial 93 

coverage of five days (August 9–13) total rainfall that led to the mid-August flood and then 94 

daily rainfall of entire 2017 monsoon (June–September) aggregated over four large domains 95 

of GB river basins (Figure 1b) with gauge measured rainfall data. Selected non-gauge rainfall 96 

datasets include the Tropical Rainfall Measurement Mission (TRMM) 3B42 RT, Global 97 
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Precipitation Measurement (GPM) Early Run v.4, ECMWF ERA-Interim, Climate Prediction 98 

Center (CPC), and Weather Research and Forecasting (WRF) model.  99 

We investigated the GB hydrometeorology that prevailed before and during the August 100 

2017 floods, examined the river conditions, sequences of monsoon rainfall and attempted to 101 

understand the reason that led to a 200-year flood warning in the Brahmaputra basin. We 102 

applied extreme value analysis (EVA) of GB basins’ rainfall and streamflow to estimate the 103 

return period of various hydrometeorological events. We compared the August 2017 flood 104 

with two previous large floods in the region, 1998 and 2007, to discuss the mechanisms 105 

behind the large floods. Uncertainty in quantitative rainfall observation and forecasts data is 106 

widely considered as major limitations of developing short (3–5-day) to mid-range (6–10-107 

day) flood forecasts (Cloke & Pappenberger 2009; Charba & Samplatsky 2010; Dravitzki & 108 

James 2011; Palash et al. 2018). However, developing lumped to detailed hydrological 109 

modeling, employing satellite altimetry, or adopting more complicated hybrid methods (e.g., 110 

Webster et al. 2010; Hopson & Webster, 2010; Hossain et al. 2014; Yucel et al. 2015) 111 

continues with wider acceptability and appreciation towards operational flood forecasts for 112 

5–10-day lead times. Within this context, we examined the utility of a data-based modeling 113 

framework with a requisite simplicity approach (Ward 2005; Stirzaker et al. 2010; Cilliers et 114 

al. 2013; Palash et al. 2018) that identifies key variables and processes of rainfall runoff 115 

mechanism of a river basin and developed a Requisitely Simple (ReqSim) 1–10-day flood 116 

forecast model for the GBM Rivers. The details of this model, data, approach, and 117 

applications have been published earlier in Palash et al. (2018). By using the outputs of the 118 

regional scale GBM model, we have developed a follow-up ReqSim model for the local 119 

scale—that is, the alluvial river system in the downstream of the GBM river basins inside 120 

Bangladesh. Section 6 provides details of the local scale ReqSim model development. Both 121 
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regional and local scale models were run experimentally during 2017 floods seasons of the 122 

region, and this manuscript presents the results of both models. 123 

The ReqSim model relies on easily available precipitation datasets like TRMM and 124 

GPM and ground observations at forecast locations (e.g., WL or streamflow). We ran the 125 

model at a daily time step for the 2017 flood season and generated real-time forecasts of three 126 

most important basin outlet points of the Ganges, Brahmaputra and Meghna (GBM) river 127 

basins (Figure 1b) through which about 80% of the flood season water enters Bangladesh 128 

(Palash et al. 2014). Generating reliable forecasts of these three river points is usually 129 

considered a major challenge to existing flood forecast and disaster management activities in 130 

Bangladesh (Hopson & Webster 2010; Hossain et al. 2014). We have also expanded the 131 

ReqSim model coverage to another 30 downstream river points in the north, east, and central 132 

region of Bangladesh during 2017 flood period. The current paper, therefore, presents a 133 

holistic performance evaluation of the ReqSim flood forecast model for the 2017 monsoon 134 

and the August flood event. 135 

3 Data 136 

We collected observed rainfall, WL and streamflow data of the GB river basin for the 137 

August 2017 flood and the historical period from Bangladesh Water Development Board 138 

(BWDB) (https://www.bwdb.gov.bd/) and Institute of Water Modeling (IWM) 139 

(www.iwmbd.org). For basin historical rainfall data, we relied on the APHRODITE (Asian 140 

Precipitation Highly Resolved Observational Data Integration Towards Evaluation) dataset 141 

for 1957–2007 and TRMM 3B42 for 1998–2017 period. The basin-wide monsoon and 5 and 142 

9-days annual maximum rainfall of these two datasets were compared first for their common 143 

period (1998–2007), calculated and applied a bias correction to TRMM for 2008–2017 period 144 

and a complete data series for 1957–2017 period was prepared. The satellite and weather 145 

https://www.bwdb.gov.bd/
http://www.iwmbd.org/
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model generated rainfall data were collected from: i) TRMM 3B42RT v.7 (special resolution 146 

0.250) (Goddard  Earth Sciences Data and Information Services Center, 2016), ii) GPM 147 

3IMERGDE v.4 (0.10) (Huffman, 2016), iii) ECMWF ERA-Interim (0.50) 148 

(http://apps.ecmwf.int/datasets/), iv) CPC NOAA (0.50) (Chen et al., 2008, 149 

https://www.esrl.noaa.gov/psd/data), and v) Weather Research Forecast (WRF) (0.250) from 150 

IWM. 151 

4 2017 August Floods 152 

4.1 The peak rainfall events and performance of datasets 153 

Unusually heavy rainfall occurred in the second week of August across southeast Nepal; 154 

south Sikkim, north West Bengal, and west Assam provinces of India; southwest Bhutan; and 155 

northwest Bangladesh region. According to gauge measured and satellite data, some places in 156 

these areas received more than 500 mm rain over a 5 days period from August 9‒13 (Figure 157 

1c‒1h). An extreme value analysis (EVA) reveals that annual maximum 5 (9) days total rain 158 

in the Brahmaputra domain IV, occurred over August 9–13 (August 7–15), were 45 (15)-year 159 

return period events. They were 8 (5)-year events in the domain III of the basin. Considering 160 

entire basin, the peak rainfalls were 50 (20)-year events, which led to a 65–75-year flood 161 

flow in the downstream. So, the peak rainfall event in the lower Brahmaputra region 162 

preceding the mid-August 2017 flood was indeed extremely high. 163 

Regarding the non-gauge rainfall dataset’s ability to capture extreme rainfall events in 164 

the region, TRMM and GPM show a much better coverage of rainfall observations across the 165 

region. They also a show close similarity to the distribution of gauge rainfall along the Nepal 166 

and India border; south Sikkim, north West Bengal, and east Assam in India; east Bhutan; 167 

and northwest Bangladesh region (Figure 1d‒1Error! Reference source not found.e). The 168 

rainfall patterns in the southern coastal and southeast Hilly regions of Bangladesh are also 169 

http://apps.ecmwf.int/datasets/
https://www.esrl.noaa.gov/psd/data
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captured well by these two datasets. ECMWF rainfall too successfully captures the overall 170 

rainfall patterns in the GB basins (Figure 1f). CPC shows high rainfall in lower parts of the 171 

GB (e.g., in Bangladesh), but failed completely along the India-Nepal border, in Assam 172 

(India) and Bhutan (Figure 1g). WRF is the only forecasted rainfall considered here that 173 

provides 1–6-day rainfall forecasts. Although WRF captures heavy rainfall distribution and 174 

magnitudes with reasonable accuracy, it overestimates rain significantly in areas where gauge 175 

or other datasets do not show much rain (Figure 1h). 176 

 177 

Figure 1 here. 178 

Figure 2 here. 179 

 180 

The domain average daily rainfall of all non-gauge dataset shows an impressive 181 

agreement with gauge data in all Ganges domains (Figure 2). It is reasonable in domain IV, 182 

moderate in domain III, and poor in domains II and I of the Brahmaputra basin. The non-183 

gauge rainfall estimates work better in wet regions (e.g., the eastern Ganges and the southern 184 

Brahmaputra) than comparatively arid regions (e.g., the western Ganges and norther 185 

Brahmaputra). TRMM and GPM datasets show significantly better correspondence to gauge 186 

data. For example, the R2 of domain I‒IV rainfall of TRMM (GPM) vary from 0.43–0.82 187 

(0.32–0.78) in the Ganges and from 0.14–0.78 (0.14–0.73) in the Brahmaputra basin.  188 

The performance of WRF’s 1-day forecast is moderate (poor) in the Ganges 189 

(Brahmaputra) basin; e.g., R2 of domain I‒IV rain varies from 0.36–0.65 (0.12‒0.35). WRF’s 190 

accuracy drops significantly with forecast lead time increase; gives very poor 6-day forecasts 191 

in both river basins. The performance of ECMWF’s real-time observation is moderate to 192 

reasonable, while the CPC data gives below average to poor results. Comparing rainfall from 193 

various sources clearly demonstrates TRMM and GPM’s ability to capture large-scale rainfall 194 
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scenarios in the GB basin, which can be useful in hydrological or data-based flood modeling. 195 

The quality of ECMWF and CPC rain is comparatively less than earlier two and allows 196 

ample opportunity to improve. 197 

 198 

4.2 200-year flood prediction for the Brahmaputra basin 199 

As mentioned earlier, on August 12, 2017, GloFAS predicted large-scale flooding in the 200 

GB basins for the next 7‒10 days and warned that the Brahmaputra basin might experience a 201 

flood “likely to be more than a 200-year return” due to continuous heavy rain in the upstream 202 

(http://erccportal.jrc.ec.europa.eu/ECHO-Flash/ECHO-Flash-List/yy/2017/mm/8). The 200-203 

year flood prediction was circulated by Joint Research Center (JRC) of EC at that time, got 204 

huge traction by the media in Bangladesh, and disaster managers and experts took initiatives 205 

to make people informed about it. However, disseminating an overtly false prediction has a 206 

major downside; it is felt not only in millions of people’s daily miseries (e.g., increase in food 207 

price) but also in a challenge of gaining people’s trust back on flood forecasts.  208 

The rainfall event in the lower Brahmaputra basin preceding of August flood was very 209 

large and highest flood levels were reported at several monitoring stations along the 210 

Brahmaputra and its tributaries in Assam (India), Bhutan and north Bangladesh between 211 

August 11 and 17 (SANDRP 2017a). But the flood event did not cross the 70-year return 212 

period mark. So, what went wrong in GloFAS’s 200-year flood prediction at that time? 213 

From the discussion in the previous section, it can be summarized that a 50-year 5 days 214 

rainfall event led to a 65–75-year 2 days peak flood flow (PF) in the Brahmaputra basin 215 

during 2017 mid-August. Past analysis of the basin’s hydrometeorology though suggests that 216 

a 50-year rain could have led to a disproportionately large flood had the basin’s monsoon 217 

rainfall sequence been steady and streamflow conditions were at or near bankfull stage before 218 

that peak rain event.  219 

http://erccportal.jrc.ec.europa.eu/ECHO-Flash/ECHO-Flash-List/yy/2017/mm/8
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For instance, in 1998 mid-September, an average rain event for a 5–9 days period 220 

generated a 30-year PF in the Brahmaputra basin. It was the 5-year rain and 45-year PF in the 221 

Ganges basin at that time. By early September, both basins were already saturated following 222 

heavy rainfall in the preceding monsoon months (June‒September), and rivers were in a 223 

bankfull stage (Figure 3a‒3b). As such, even a relatively small peak rain event contributed a 224 

very large runoff to already filled rivers and generated a very large PF. Together with the 225 

flow synchronization in downstream, the 1998 flood became one of the most severe and 226 

longest floods in South Asian history. 227 

Besides the peak events, a 5-year monsoon rain generated a 10-year monsoon flow in 228 

the Ganges while it was the 20-year monsoon rain that generated an unusually high monsoon 229 

flow with 100-year return period in the Brahmaputra basin in 1998. In contrast, the 230 

Brahmaputra received only 10% more rainfall than average during the 2017 monsoon 231 

(SANDRP 2017b), yet generated a 20-year monsoon flow. Aside from the two very large 232 

rainfall-streamflow events in July and August, the basin received poor rainfall and had low 233 

streamflow for the rest of the monsoon (Figure 3h). In the Ganges, both peak and monsoon 234 

rain events in 2017 were below normal (Figure 3g); the basin received 15–20% less monsoon 235 

rainfall than normal (Ibid). Consequently, the downstream peak or monsoon flow of the basin 236 

were also below normal. 237 

Thus, it can be concluded that it was the sequence of rainfall events in preceding 238 

monsoon months that led to record floods in the GB basins in 1998. In 2017, the Brahmaputra 239 

basin was relatively drier, and rivers had much lower streamflow before the 50-year rain 240 

event started. Such an extreme event then generated a huge runoff, raised the river WL above 241 

DL rapidly, but the floods were short-lived as subsiding rain by mid-August helped to lower 242 

the level below DL within a week (Figure 3h‒3i). Also, the lower Ganges flow inside 243 
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Bangladesh helped to recede the Brahmaputra (Figure 3g‒3i). The factors mentioned above 244 

worked in tandem in generating a flood not larger than 65–75-year event in August 2017. 245 

 246 

Figure 3 here. 247 

 248 

In summary, the record rainfall did not lead to record flooding. Generally speaking, it is 249 

well established in hydrology literature that extreme rainfall does not always generats a large 250 

flood. It depends on multiple factors: a sequence of past rainfall, basin’s soil moisture 251 

condition, the flow of the river, the length of the peak rainfall event, etc. Normal rain over a 252 

lengthy period saturates the basin’s soil and causes future rainfall to generate higher runoff 253 

and travel faster to the river network. River basins, thus can be thought of having a ‘memory’ 254 

suggesting that the preceding rainfall and streamflow events in the basin control how the river 255 

system will respond to future rainfall-runoff events (Dixon 2018). Particularly, if the 256 

uncertainty in the river basin’s initial condition is not resolved accurately enough apart from 257 

inaccuracies coming from input (e.g., rainfall) uncertainty. Hydrological models may not 258 

accurately account for the river’s initial condition, and that poses a limitation of its modeling 259 

capabilities. In a combination of all—i.e., uncertainty in input data, initial condition, and 260 

model structure—a hydrological flood forecasting model may give an overestimate or 261 

underestimate of a flood event by a big margin. And this is what we reckon the GloFAS 262 

might have encountered during August 2017 Brahmaputra flood prediction. 263 

 264 
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5 ReqSim Local and Regional Scale Flood Forecast 265 

5.1 ReqSim model structure 266 

The persistence in the streamflow or WL data—that is, the river flow will remain 267 

similar over the next few days (Alfieri et al. 2013)—and the daily rainfall aggregated over 268 

large domains in a river basin are a good predictor of downstream river flow, and thus 269 

flooding. We first derived isochrones (i.e., flow travel time map), divided upstream 270 

contributing basin areas into two to four large domains (depending on basin size, topography, 271 

and hydrology), and calculated maximum and minimum flow travel time of each domain to 272 

downstream forecast location in no. of days. The domain averaged daily rainfall are then 273 

aggregated over travel time range for each forecast lead time (i.e., 1 to 10-day). We 274 

integrated this space‒time-aggregated rainfalls to streamflow/WL measurement at forecast 275 

location in a regression model and thus generated flood forecasts of that location (Figure 3). 276 

The model is named as Requisitely Simple (ReqSim) flood forecast model; applied first to 277 

GBM river basins for the 2007-2015 period and reported in Palash et al. (2018). The forecast 278 

performance was found impressive for up to 10-day lead time at Hardinge Bridge on the 279 

Ganges, up to 7-day at Bahadurabad on the Brahmaputra, and up to 3‒5-day at Amalshid on 280 

the Barak or Upper Meghna River inside Bangladesh. These three river points (Figure 4) are 281 

close to the India-Bangladesh international border. Important to note that, predicting the 282 

incoming GBM river flow through these river points is generally considered a major 283 

challenge for forecasting floods in the alluvial river system in Bangladesh, mainly because of 284 

unavailability of gauge measured data from upstream basin countries (Hopson and Webster 285 

2010; Hossain et al. 2014a; Hossain and Bhuiyan 2016). We will refer these river points as 286 

“base stations” from this point onward.  287 
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In our earlier application of the ReqSim model to regional scale (Palash et al. 2018), we 288 

presented three levels of model complexity. In this chapter, however, we present the structure 289 

of “flow persistence coupled with observed and forecasted rain modeling framework” only. 290 

The structure of that modeling framework is: 291 

 292 

𝑄𝑡+𝑛 = 𝛼𝑛𝑄𝑡 + 𝛽𝑛𝑄𝑡−1 + 𝑎𝑛𝑅𝐼,𝑛 + 𝑏𝑛𝑅𝐼𝐼,𝑛 + 𝑐𝑛𝑅𝐼𝐼𝐼,𝑛 + 𝑑𝑛𝑅𝐼𝑉,𝑛 + 𝛾𝑛 (1) 293 

 294 

𝑅𝑖,𝑛 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑅𝑖, 𝑡−𝑇𝑖,𝑚𝑎𝑥+𝑛 … …  𝑅i,𝑡−𝑇𝑖,𝑚𝑖𝑛+𝑛)     (2) 295 

 296 

where, 𝑄𝑡+𝑛 is the forecasted streamflow/WL of 𝑛-day lead time; 𝑄𝑡, and 𝑄𝑡−1 are 297 

observed streamflow/WL on forecast day 𝑡 and previous day 𝑡 − 1, respectively; 𝛼𝑛 and 𝛽𝑛 298 

are model coefficients related to persistence; and 𝛾𝑛 is a regression interception coefficient. 299 

𝑅𝐼, 𝑅𝐼𝐼, 𝑅𝐼𝐼𝐼  and 𝑅𝐼𝑉 are lagged space‒time-aggregated rainfall of four domains I to IV 300 

(Figure 1b); and 𝑎𝑛, 𝑏𝑛 , 𝑐𝑛, 𝑑𝑛 are corresponding model coefficients. 𝑇𝑖,𝑚𝑎𝑥 and 𝑇𝑖,𝑚𝑖𝑛 are 301 

maximum and minimum flow travel time (in days) for domain 𝑖 (I to IV) while 𝑡 is the 302 

forecast day (i.e., 0 day), and 𝑛 is the forecast lead time (i.e., 1 to 10-day). If 𝑡 − 𝑇𝑖,𝑚𝑎𝑥 + 𝑛 303 

and/or 𝑡 − 𝑇𝑖,𝑚𝑖𝑛 + 𝑛 > 𝑡 where 𝑡 is the forecast day (i.e., 0 day) then forecasted rain of 𝑚 304 

lead time is considered in the model for domain 𝑖 providing that 𝑡 − 𝑇𝑖,𝑚𝑎𝑥 + 𝑛 and 𝑡 −305 

𝑇𝑖,𝑚𝑖𝑛 + 𝑛 ≤ 𝑡 + 𝑚. 306 

The satisfactory forecast results from ReqSim regional scale GBM model encouraged us 307 

to develop a local scale model for the alluvial river system of Bangladesh by using the 308 

outputs of the regional model. We applied a simple forecast transferring mechanism from 309 

those three base stations to downstream or upstream river points (Figure 4) by using a 310 

regression modeling structure. The structure of the forecast transfer from base stations to 311 

immediate upstream/downstream points and then from those points to further 312 

upstream/downstream points is as follows: 313 

 314 
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𝐻𝑡+𝑛 = 𝛼𝑛𝐻𝑡 + 𝛽𝑛𝐻𝑡+𝑛
𝑢𝑠/𝑑𝑠

+ 𝛾𝑛         (3) 315 

 316 

where, 𝐻𝑡+𝑛 is the forecasted water level on 𝑛-day lead time at forecast location; 𝐻𝑡 is 317 

the observed water level on forecast day (i.e., 𝑡 = 0) at the same location; 𝐻𝑡+𝑛
𝑢𝑠/𝑑𝑠

 is already 318 

generated forecasted water level at upstream or downstream river points (from where 319 

forecasts are about to transfer to target location) on 𝑛-day lead time; and 𝛼𝑛, 𝛽𝑛, and 𝛾𝑛 are 320 

coefficients of the regression model. The idea of transferring forecast from one river point to 321 

another is thus very simple. The linear regression model includes forecast day’s water level at 322 

target or “to” river point (i.e., 𝐻𝑡) and forecasted water level of “from” river points (i.e., 323 

𝐻𝑡+𝑛
𝑢𝑠/𝑑𝑠

) to generate forecasts at “to” river point for 𝑛-day lead time (i.e., 𝐻𝑡+𝑛).  324 

But before transferring forecasts, it was necessary to identify those river points for 325 

which the base stations’ forecasts can be transferred. Once those river points are identified, 326 

the forecast transfer begins from base stations to their immediate downstream or upstream 327 

river points and from those points to further downstream or upstream points respectively.  328 

5.2 Identification of local scale forecast locations 329 

We considered cross-correlation function (CCF) between daily water level data of two 330 

neighboring river points to identify whether those points share a “similar” riverine hydrologic 331 

regime. For instance, we set a CCF value of ≥ 0.8 to identify those similar hydrologic regime 332 

points for which a forecast transfer from one river points to another is possible. The CCF is 333 

computed by using the following equation:  334 

 335 

𝐶𝐶𝐹(𝑥, 𝑦) =  
∑ [(𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)]𝑛

𝑖=1

√∑ (𝑋𝑖−𝑋̅)2𝑛
𝑖=1 ∑ (𝑌𝑖−𝑌̅)2𝑛

𝑖=1

        (4) 336 

 337 

Where, 𝑋𝑖 and 𝑌𝑖 are two daily time series data of two river points, 𝑋̅ and 𝑌̅are mean of 338 

𝑋𝑖 and 𝑌𝑖, respectively. Figure 4Error! Reference source not found. shows both river points 339 
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and river stretch for which a similar riverine hydrologic regime has been found. Encircling 340 

the highly correlated river points, as shown by dashed black polyline in the figure, thus 341 

identifies the river systems and forecast locations for which the ReqSim local scale model has 342 

been applied during 2017 flood season. 343 

 344 

Figure 4 here. 345 

 346 

5.3 Performance of ReqSim operational run during August 2017 flood 347 

The ReqSim regional (i.e., GBM river basins) and local scale (i.e., selected alluvial river 348 

systems in the downstream of the GBM inside Bangladesh) models continued its 349 

experimental operational run during 2017 South Asia flood season and generated forecasts 350 

for three base and other river stations.  351 

 352 

Figure 5 here. 353 

 354 

The performance of the ReqSim WL forecasts in the Ganges River inside Bangladesh is 355 

impressive up to 10-day lead time during 2017 flood season. The R2, mean absolute error 356 

(MAE) and root mean square error (RMSE) of the Ganges forecasts at Hardinge Bridge are 357 

0.92, 0.43 m and 0.57 m for 10-day lead time respectively. The Brahmaputra forecasts at 358 

Bahadurabad was reliable up to 7-day lead time; corresponding R2, MAE, RMSE are 0.59, 359 

0.49 m, 0.63 m respectively. The performance in the Barak (upper Meghna) River at 360 

Amalshid was limited up to 5-day lead time; corresponding R2, MAE, RMSE are 0.49, 0.80 361 

m, 0.98 m respectively. Figure 5a‒5d show ReqSim performance at each river points from 3-362 

day to 10-day lead time. Figure 5e‒5f show ReqSim’s ability to predict August 2017 flood by 363 

using a time series comparison, and it had been encouraging. The model successfully 364 



 

-16- 

 

captured the Brahmaputra flow rise, peak flood timing and its magnitude with reasonably 365 

high accuracy up to 5-7 day lead-times (Figure 5f). For the Ganges, high performance up to a 366 

10-day lead-time had been consistent throughout 2017 monsoon (Figure 5e). 367 

ReqSim’s performance at 30 downstream points along the major rivers of Bangladesh 368 

was also impressive. For instance, the model performed very well in the Ganges-Mahananda-369 

Gorai system in the west of country up to 10-day lead-time; reasonably well in the 370 

Brahmaputra, Old Brahmaputra, Padma, Kumar and other rivers in the central part up to 7-371 

day lead-time; and moderately in the Surma-Kushiyara system in the east up to 5-day lead-372 

time (Table 1 and Figure 5a-5d). These performances are in line with the basin size, terrain 373 

and land cover properties; basin hydrometeorology; physical memory of the system (e.g., 374 

flow travel and flood response time). 375 

 376 

Table 1 here. 377 

 378 

6 Conclusion 379 

In this study, we have explored the utility of a data-driven approach and the 380 

applicability of various remote sensing and ground-based rainfall datasets to regional and 381 

local scale flood forecasting in large river basins influenced by monsoon systems. As part of 382 

this approach, we have explored in detail the hydrometeorology of the Ganges and 383 

Brahmaputra (GB) river basins that prevailed during and before the record August 2017 384 

floods. We further analyzed the spatial distribution of extreme rainfall events, their effect on 385 

streamflow response and resulting widespread flooding unleashed in the eastern Ganges and 386 

southwestern Brahmaputra river basin. We found that the basin-wide 5 (9) days cumulative 387 

rain from August 9–13 (August 7–15) was a 50 (20)-year event in the Brahmaputra basin.  388 
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Rainfall data comparison suggests that the NASA TRMM 3B42 RT and GPM Early 389 

Run v.4 datasets give the most promising rainfall coverage with considerable accuracy, 390 

particularly in high rainfall regions of the GB basins. The ECMWF rainfall provides 391 

moderate accuracy while the CPC data shows poor agreement with gauge data. The 392 

performance of WRF’s forecast rainfall is moderate at 1-day lead time, and its accuracy falls 393 

sharply with forecast lead time increase. 394 

We explored the hydrometeorological conditions behind the 200-year flood prediction 395 

for the Brahmaputra river basin made by a European agency GloFAS. Our analysis suggests 396 

that a 50 (20)-year rain event over a 5 (9) days period led to a 65–75-year 2 days peak flood 397 

flow event in the Brahmaputra basin’s downstream region. Failing to account for the past 398 

Sequence of rainfall events, basin’s initial soil moisture condition, existing streamflow, and 399 

length of peak rain event—perhaps played a key role for a rainfall event turning out to be a 400 

smaller flood event.  401 

As part of an extended analysis of the August 2017 GB floods and the state of 402 

prediction, we presented our data-based Requisitely Simple (ReqSim) flood forecast model’s 403 

1–10-day forecast performance in the Ganges, Brahmaputra, and Meghna (GBM) Rivers 404 

(regional scale model application) and its major distributaries inside Bangladesh (local scale 405 

application). The performance in the Ganges, Brahmaputra and Meghna river system are 406 

impressive with an accurate prediction of peak flood rise and fall up to 10-, 7-, and 5-day lead 407 

time, respectively. Considering ReqSim’s performance throughout 2017 flood season in 408 

major rivers of Bangladesh, we believe the model has enormous potential in adding valuable 409 

information to existing flood warning and dissemination services in the region.  410 

 411 
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